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A systematic approach is presented to describe nonresonant multiphoton transitions, i.e., transitions
between two electronic states without the presence of additional intermediate states resonant with
the single-photon energy. The method is well suited to describe femtosecond spectroscopic
experiments and, in particular, attempts to achieve laser pulse control of molecular dynamics. The
obtained effective time-dependent Schrödinger equation includes effective couplings to the radiation
field which combine powers of the field strength and effective transition dipole operators between
the initial and final states. To arrive at time-local equations our derivation combines the well-known
rotating wave approximation with the approximation of slowly varying amplitudes. Under these
terms, the optimal control formalism can be readily extended to also account for nonresonant
multiphoton events. Exemplary, nonresonant two- and three-photon processes, similar to those
occurring in the recent femtosecond pulse-shaping experiments on CpMn�CO�3, are treated using
related ab initio potential energy surfaces. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2766717�

I. INTRODUCTION

Among multiphoton transitions those excitations which
take place without resonant intermediate states are of huge
importance. When carrying out experiments in the strong-
field regime, for example, to generate high harmonics, so-
called nonresonant multiphoton transitions �NMTs� may take
place. Here, by NMT it is meant that transitions between
molecular energy levels �mainly electronic levels� can only
take place if the energy of two or more photons induces a
transition that does not involve intermediate states which
support it. Consequently, NMT should appear whenever the
applied frequency is at most half of the fundamental optical
transition. The absence of intermediate states indicates that
coupling matrix elements to the multitude of higher lying
off-resonant states are very important.

NMT processes are fairly standard when considering ex-
periments in the frequency domain. The respective theory
has been worked out many years ago and is well documented
in the literature1 �see also the recent application, partly in the
framework of time-dependent density functional theory2–5�.
Much less has been done, however, within the field of fem-
tosecond spectroscopy �see Refs. 6–9�. Nevertheless, NMT
processes may participate in closed-loop feedback laser pulse
control experiments, as those recently performed on the or-
ganometallic compound CpMn�CO�3 �Cp=�5C5H5�.10 The
theoretical challenge of treating NMT phenomena offers a
particular extension to the field of femtosecond laser pulse
control of molecular dynamics �for a recent overview see
Refs. 11–17�. It is the aim of the present paper to achieve this
by extending our preliminary considerations given in Refs.
18 and 19.

Often it suffices to describe NMT in the framework of
perturbation theory with respect to the reference molecule
field coupling −�̂E�t� �see Ref. 1 or the more recent works
in Refs. 2–5�. Here, �̂ is the molecular dipole operator and
E�t� denotes the electric field strength of the laser pulse.
Considering nonresonant two-photon processes the transition
probability between the ground and the first excited state is
determined by the following expression:

Pg→e �
E4

��eg − 2��2��x

	�e��̂��x
	�x��̂��g

�xg − �

�2

. �1�

The first term on the right-hand side includes the field am-
plitude E and indicates the possible resonant character of the
two-photon transition from the ground state �g into the ex-
cited state �e ��eg is transition frequency and � denotes the
frequency of the external field�. In the second term the dipole
operator transition matrix elements describe transitions from
the ground state into the �quasicontinuum� of high lying
states �x and back into the first excited state. The frequency
denominator indicates the nonresonant character of these
transitions where the �xg denote the transition frequencies
from the ground state into the off-resonant states. It is obvi-
ous that the amount of off-resonant states contributing de-
pends on the magnitude of the overall transition probability.
The used perturbational treatment of the coupling to the ra-
diation field, however, restricts the whole description to the
low-field regime.

To enter a regime of strong fields a nonperturbative in-
corporation of −�̂E�t� is required, which becomes possible
by a direct solution of the time-dependent Schrödinger equa-
tion �including the coupling to the radiation field�. Since the

THE JOURNAL OF CHEMICAL PHYSICS 127, 144102 �2007�

0021-9606/2007/127�14�/144102/11/$23.00 © 2007 American Institute of Physics127, 144102-1

Downloaded 25 Jan 2008 to 35.9.2.141. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.2766717
http://dx.doi.org/10.1063/1.2766717
http://dx.doi.org/10.1063/1.2766717


high lying off-resonant part of the molecular spectrum
should be incorporated, it is advisable to solve the
Schrödinger equation by avoiding any state expansion. If this
becomes possible with a sufficiently high precision, any type
of light-induced transitions, as well as all the different NMT
processes among them, can be accounted for. This direct
nonperturbative approach has been demonstrated for atoms
and diatomic molecules �with a fixed nuclear distance, see
Refs. 20 and 21�, as well as for one-dimensional model sys-
tems �avoiding the Born-Oppenheimer approximation�.22,23

However, such a treatment cannot be applied to poly-
atomic systems. In these systems, because of computational
difficulties, it is only possible to cover a restricted part of the
overall electronic spectrum. A very reduced set of excited
states �a, generalized to potential energy surfaces �PESs� for
a selected set of nuclear coordinates, becomes available. A
possible solution to this predicament is a description where
all electronic states with energy levels far above the initial
and final states of the NMT process are described in a way
independent of the solution of the time-dependent
Schrödinger equation.1 For clarity we will call them nonreso-
nant secondary states. Those states representing the initial
and final states within the NMT process will then be named
primary states. Since the secondary states enter the theory
only via effective NMT coupling matrix elements D, there is
no need to compute them directly. In this way, one may end
up, for example, with an effective expression �E�t�DE�t�
valid for nonresonant two-photon transitions and exclusively
defined in the Hilbert space of primary states.

The use of effective coupling expressions to the radia-
tion field is known from literature �see, e.g., Refs. 24 and 25�
and the general approach of deriving such effective cou-
plings is also known �see, for example, Refs. 1, 7, and 18�,
but it has been neither applied to the femtosecond spectros-
copy nor used in the framework of optimal control theory
�OCT�. The latter represents an important theoretical tool for
simulating an experiment using laser pulse control26–28 �see
also the recent formulation in Refs. 29–31�.

In the following we shall show how NMT processes can
be incorporated into a theory which only accounts for a very
selected set of states �previously introduced here as the pri-
mary states�. This enables us to establish an effective time-
dependent Schrödinger equation with effective couplings to
the radiation field including powers of the field strength and
effective transition dipole operators. Such a treatment has
two advantages. First, by solving a time dependent
Schrödinger equation one avoids the computation of multiple
time integrals necessary within perturbation theory. Second,
and what is more important, a generalization of OCT to
NMT processes becomes possible.

The present paper continues our earlier considerations of
Ref. 19 and incorporates nonresonant three-photon transi-
tions. It is organized as follows. After shortly describing the
model and its specification to CpMn�CO�3 �Refs. 10 and 18�
in Sec. II, a systematic derivation of the effective coupling
expressions will be given in Sec. III. Different approxima-
tions are introduced in Sec. IV, mainly based on a combina-
tion of the rotating wave approximation �RWA� and the
slowly varying amplitude approximation �SVA�. Afterwards,

Sec. V explains how to apply OCT if NMTs are involved.
Corresponding applications to CpMn�CO�3 can be found in
Secs. IV and V. The paper ends with some concluding re-
marks.

II. THE MOLECULAR SYSTEM

The Hamiltonian of the polyatomic molecular system
undergoing NMT processes is written as

H�t� = Hmol + Hfield�t� . �2�

An expansion of the molecular part with respect to the adia-
batic electronic states ���
 gives

Hmol = �
�

H��q����
	��� . �3�

The H��q� denote the related vibrational Hamiltonians �q
abbreviates the set of vibrational coordinates�. The eigenval-
ues and eigenfunctions of the vibrational Hamiltonian are
written as ���M =���+���M and ��M, respectively, where
��� defines the electronic reference energy �minimum of the
PES plus vibrational zero-point energy� and M denotes the
set of vibrational quantum numbers. Accordingly, the adia-
batic electronic-vibrational states ���M
= ���M
���
 form a
complete basis for the systems under consideration.

The part of Eq. �2� which describes the coupling to the
radiation field is given in the standard dipole approximation
and reads

Hfield�t� = − E�t��̂ � − E�t� �
��	

d�	���
	�	� + H.c., �4�

where �̂ is the molecular dipole operator, the d�	 are its
electronic matrix elements, and E�t� denotes the electric field
strength. It will be written as

E�t� = 1
2nE�t�e−i�t + c.c., �5�

with n the unit vector of �linear� polarization, E�t�, the field
envelope, and � the carrier frequency.

In order to introduce the separation of the whole state
space into the part of primary states and strongly off-
resonant secondary states, we split up the �� into the set �x

belonging to the state space of secondary states and a re-
maining set �a related to the primary state space. The latter
may comprise the electronic ground state, a=g, and the first
excited state with a=e �some other excited states, a
= f , f� , . . ., higher in energy may be included, too�. It is ad-
vantageous to introduce the density of states �DOS� belong-
ing to the secondary states,

��
� = �
x,K

��
 − �xK� . �6�

If necessary, it can be reduced to a pure electronic DOS.
As indicated in the Introduction, numerical simulations

will be presented for CpMn�CO�3, for which ab initio poten-
tial energy surfaces and related properties are available.10,32

Within the scope of this paper, we focus on nonresonant
two-photon and three-photon transitions between the ground
and the neutral electronic excited state c 1A�. The corre-
sponding potential energy curves along the Mn–CO distance
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with a schematic optical transition are illustrated in Fig. 1. At
the employed level of theory �multireference configuration
interaction based on complete active space self-consistent
field calculations� the excited state c 1A� is vertically reached
at an excitation energy of 3.43 eV �or 362 nm�. This state is
bound until 2.442 Å, where a barrier appears due to avoided
crossings with higher excited states.32 Just before the Franck-
Condon window �at 1.848 Å�, the c 1A� state also crosses the
lower b 1A� state. Because the nonadiabatic couplings be-
tween the b 1A� and c 1A� states are very weak,32,33 they will
be neglected in the forthcoming simulations.

III. EFFECTIVE SCHRÖDINGER EQUATION FOR NMT
PROCESSES

In what follows we shortly recall the systematic way to
derive an effective NMT Hamiltonian as described in Ref.
19. The effective Hamiltonian will enter into an effective
Schrödinger equation exclusively defined in the space of pri-
mary states. The approach uses standard projection operator
techniques and is based on the projector into the space of
primary states,

P̂ = �
a

��a
	�a� . �7�

Its orthogonal complement is denoted by

1 − P̂ � Q̂ = �
x

��x
	�x� . �8�

By introducing P̂ and Q̂ we obtain the primary and second-

ary states as ��1�t�
= P̂���t�
 and as ��2�t�
= Q̂���t�
,
respectively, where ��t� is an arbitrary state defined in the
complete Hilbert space.

Standard projection operator techniques yield a closed
equation for the primary states �see Ref. 19�:

i�
�

�t
��1�t�
 = H1�t���1�t�
 + �

t0

t

dt̄Kfield�t, t̄���1�t̄�
 , �9�

with H1�t�=Hmol
�1� +Hfield

�1� �t�= P̂H�t�P̂ and with the time-
integral kernel

Kfield�t, t̄� = −
i

�
P̂Hfield�t�Q̂U2

�mol��t − t̄�

�S2�t, t̄;E�Q̂Hfield�t̄�P̂ . �10�

The originally appearing time-evolution operator U2�t , t̄ ;E�
defined by H2�t�=Hmol

�2� +Hfield
�2� �t�= Q̂H�t�Q̂ has been sepa-

rated into U2
�mol��t− t̄� and into S2�t , t̄ ;E�. The S operator is

defined in the standard way by Hfield
�2� �t� taken in the interac-

tion representation given by U2
�mol�. The obtained time-

integral kernel accounts for all NMT processes realized by
the coupling to the manifold of off-resonant states. Since the
latter have been projected out, the resulting reduced time-
dependent Schrödinger equation is time nonlocal, showing a
memory effect.

Since Eq. �9� has been derived without any approxima-
tion, its solution �1�t� should be identical with ��t� pro-
jected into the space of primary states. If a particular ap-
proximation for Kfield is taken, however, the quality of the
result has to be judged by separate computations. Such a
problem arises since the kernel Kfield, Eq. �10�, already in-
cludes a complete summation with respect to E. It is covered
via S2 which has to be approximated when carrying out con-
crete computations. Once such an approximation has been
introduced one has to check separately if �1 obtained by a
direct solution of Eq. �9� describes the main features of the
dynamics. We will proceed in this manner in the following.
First, we set

Kfield�t, t̄� = Kfield
�2� �t, t̄� + Kfield

�3� �t, t̄� + ¯ , �11�

where Kfield
�2� and Kfield

�3� are of second and third powers in the
field strength, respectively. They are obtained in replacing
S2�t , t̄ ;E� in Eq. �10� by an expansion up to a linear contri-
bution with respect to the field strength. In a second step, we
have to check the validity of the Kfield expansion. Before
doing this it is useful to introduce primary system electronic
matrix elements of the two types of time-integral kernels. We
obtain

Kab
�2��t, t̄� = − Dab

�2��t − t̄�E�t�E�t̄� �12�

and

Kab
�3��t, t̄� = − �

t̄

t

dt1Dab
�3��t,t1, t̄�E�t�E�t1�E�t̄� . �13�

The effective coupling matrix elements entering Kab
�2� read

Dab
�2��t − t̄� =

i

�
	�a��̂Q̂U2

�mol��t − t̄�Q̂�̂��b


=
i

�
�

x

daxe
−iHx�t−t̄�/�dxb. �14�

The second expression is obtained by introducing an expan-
sion with respect to secondary electronic states. In the same
manner we get the coupling matrix elements appearing in
Kab

�3�:

FIG. 1. Ab initio potential energy curves of CpMn�CO�3 along the Mn–CO
distance �adapted from Ref. 32�. The arrows indicate a nonresonant two-
photon transition from the electronic ground state a 1A� to the electronic
excited singlet state c 1A�. Also displayed is the vibrational target state �e

�tar�

located in the excited electronic state which will be used later when apply-
ing the OCT.

144102-3 Nonresonant multiphoton transitions J. Chem. Phys. 127, 144102 �2007�

Downloaded 25 Jan 2008 to 35.9.2.141. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



Dab
�3��t − t1,t1 − t̄� =

1

�2 	�a��̂Q̂U2
�mol��t − t1�

�Q̂�̂Q̂U2
�mol��t1 − t̄�Q̂�̂��b


=
1

�2�
x,y

daxe
−iHx�t−t1�/�dxye

−iHy�t1−t̄�/�dyb.

�15�

If the time-dependent Schrödinger equation �Eq. �9�� is ex-
panded with respect to the primary electronic states, we will
get the following coupled equations of motion for the vibra-
tional wave functions �a�t�= 	�a ��1�t�
:

i�
�

�t
�a�t� = Ha�a�t� − E�t��

b

dab�b�t�

− �
b
�

t0

t

dt̄Dab
�2��t − t̄�E�t�E�t̄��b�t̄�

− �
b
�

t0

t

dt̄�
t̄

t

dt1Dab
�3��t − t1,t1 − t̄�

�E�t�E�t1�E�t̄��b�t̄� . �16�

Besides single-photon transitions described by the second
term on the right-hand side, the equations account for two-
and three-photon nonresonant transitions. As already stated,
however, there is not any distinct criteria telling us up to
which field strengths E the wave function computed with
Kfield

�2� and Kfield
�3� is correct. Here, we resitrict to those E which

induce a fourth-order or sixth-order dependence of the
excited-state population on E. This is the limit of perturba-
tion theory and should be correct, but it has the advantage of
being generated via a complete solution of the time-
dependent Schrödinger equation. The time nonlocality, how-
ever, represents a technical disadvantage which should be
overcome by approximations explained in the subsequent
section.

IV. NMT PROCESSES DESCRIBED IN THE COMBINED
RWA AND SVA

Next, the RWA will be combined with the SVA in order
to introduce an approximation scheme leading to time-local
Schrödinger equations. First, to arrive at the RWA we expand
the primary state vibrational wave functions with respect to
powers of the basic oscillation �exp�−i�t� of the applied
pulse and obtain

�a�t� = �
n

e−in�t�a�n;t� , �17�

with n running over all integers. This expansion changes the
coupled time-dependent Schrödinger equations �Eq. �16�� to

�
n

e−in�t�i�
�

�t
+ n�� − Ha��a�n;t�

+ 1
2�

b

dab�E�t��b�n − 1;t� + E*�t��b�n + 1;t��

− �
b
�

t0

t

dt̄Kab�t, t̄�ein��t−t̄��b�n;t�� = 0. �18�

Note the introduction of dab=ndab and the abbreviation of
Kab

�2�+Kab
�3� by Kab. These latter quantities also depend on the

field amplitudes E�t� and E*�t�. In order to get the RWA, one
assumes that the time dependence of the expression in the
large bracket of Eq. �18� is slow compared to the oscillations
with multiples of �. It results to

i�
�

�t
�a�n;t� = �n�� − Ha��a�n;t�

− 1
2�

b

dab�E�t��b�n − 1;t�

+ E*�t��b�n + 1;t��

+ �
b
�

t0

t

dt̄Kab�t, t̄�ein��t−t̄��b�n; t̄� . �19�

The required slow time dependence is guaranteed if a restric-
tion to those n is taken which makes the energetic difference
corresponding to n��−Ha much smaller than ��. Once Eq.
�19� has been solved, the electronic level populations follow
as

Pa�t� = �
n

	�a�n;t���a�n;t�
 . �20�

Note that this expression neglects small contributions being
off-diagonal with respect to the index n and oscillating with
multiples of �.

In the following we present results for the primary sys-
tem restricted to an electronic two-level system with the
electronic ground state �g and the first excited state �e. To
have reference cases for the novel three-photon transition,
we shortly recall single- and two-photon transitions �see also
Ref. 19�. To get the RWA description of single-photon tran-
sitions, we concentrate on the second term of the right-hand
side of Eq. �19�. Moreover, the multitude of functions
�a�n ; t� determining the complete vibrational wave functions
�a�t� is restricted to �g�0; t� and �e�1; t�. This leads to

i�
�

�t
�g�0;t� = Hg�g�0;t� − 1

2dgeE
*�t��e�1;t� �21�

and

i�
�

�t
�e�1;t� = �He − ����e�1;t� − 1

2degE�t��g�0;t� . �22�

The two equations of motion are equivalent to a RWA Hamil-
tonian H�RWA��t�=Hmol

�RWA�+Hfield
�RWA��t�. The expression for

Hmol
�RWA� is identical to the two-level version of Hmol

�1� �except
that He has to be replaced by He−���, and the molecule field
coupling Hamiltonian takes the well-known form Hfield

�RWA��t�
=−�1/2�E�t�deg��e
	�g�− �1/2�E*�t�dge��g
	�e�. This is just
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the quantity we will utilize later when formulating the OCT
in the framework of the RWA.

Two-photon transitions are included in the time nonlocal
Kfield term of Eq. �19� �by the Kfield

�2� contribution to Kfield�. A
restriction to expansion functions �a�n ; t� which slowly vary
in time is achieved by considering �g�0; t� and �e�2; t� only.
Moreover, it has been assumed that the field amplitude E�t�
and the expansion functions �g�0; t� and �e�2; t� display such
a weak time dependence that they can be taken out of the
time integral. The Appendix explains this procedure in some
detail. It leads to �see also Ref. 19�

i�
�

�t
�g�0;t� = Hg�g�0;t� − 1

2dgg
�2��E�t��2�g�0;t�

− 1
4dge

�2�E*2�t��e�2;t� �23�

and

i�
�

�t
�e�2;t� = �He − 2����e�2;t� − 1

2dee
�2��E�t��2�e�2;t�

− 1
4deg

�2�E2�t��g�0;t� . �24�

Here, the RWA version of the effective molecule field cou-
pling Hamiltonian reads

Hfield
�RWA��t� = − 1

2 �
a=g,e

�E�t��2daa
�2���a
	�a� − 1

4E2�t�deg
�2���e


�	�g� − 1
4E*2�t�dge

�2���g
	�e� . �25�

Besides two-photon transitions, the Hamiltonian also con-
tains polarizability terms �dgg

�2� and �dee
�2�, which introduce

an ac Stark shift of both levels involved.
Three-photon transitions can be handled in the same way

as demonstrated for two-photon transitions. They are ac-
counted for by the Kfield

�3� contribution to the nonlocal Kfield

term of Eq. �19�. The RWA results in a restriction to �g�0; t�
and �e�3; t�. If combined with the SVA, we arrive at �for
details see the Appendix�

i�
�

�t
�g�0;t� = Hg�g�0;t� − 1

8dge
�3�E*3�t��e�3;t� �26�

and

i�
�

�t
�e�3;t� = �He − 3����e�3;t� − 1

8deg
�3�E3�t��g�0;t� .

�27�

The RWA version of the related coupling Hamiltonian to the
radiation field reads

Hfield
�RWA��t� = − 1

8E3�t�deg
�3���e
	�g� − 1

8E*3�t�dge
�3���g
	�e� .

�28�

In contrast to the two-photon transition coupling, it does not
contain ground- and excited-state polarizabilities.

Results for the excited-state population Pe�t� referring to
CpMn�CO�3 and a 100 fs pulse with different field strengths
are shown in Fig. 2 for nonresonant two-photon transitions
and in Fig. 3 for nonresonant three-photon transitions. To get
the two-photon coupling matrix elements dab

�2�, we take the

approximation �̄deff
2 /�, Eq. �A5�. The approximation relates

the two-photon coupling matrix elements to the mean DOS �̄
of the secondary states and to the square of an effective
�mean� transition dipole moment deff between primary and
secondary states. The three-photon coupling matrix elements
dab

�3� have been estimated according to �̄2deff
3 /�2, Eq. �A12�.

Moreover, one can easily prove that the excited-state popu-
lations presented in Fig. 2 are proportional to the fourth
power of the field strength and those of Fig. 3 to the sixth
power. This behavior indicates that we are just in the range
of perturbation theory for nonresonant two-photon transi-
tions as well as for nonresonant three-photon transitions, i.e.,
the results are consistent with the expansion in Eq. �11�.

For comparison, the population achieved by a strongly
off-resonant single-photon transition is also shown. It only
results in an intermediate population during the pulse action
with a residual value after excitation of about four to five
orders of magnitude smaller than the respective NMT value
�see inserts of Figs. 2 and 3�.

V. OCT OF NMT PROCESSES

In the following, the presented version of nonresonant
two-photon and three-photon transitions shall be embedded
into the OCT. The standard version of OCT �see, e.g., Refs.
11–13� assumes that a molecular state, the target state �tar, is
attainable by a laser-driven molecular wave function ��t� at
time tf, or in other words, that the overlap expression
�	�tar ���tf�
�2 be unity. To determine the laser pulse which

FIG. 2. Nonresonant two-photon transitions in CpMn�CO�3 �upper panel�
compared with nonresonant single-photon transitions �lower panel�. Shown
are the temporal evolutions of the excited-state population Pe�t� �of the c 1A�
state, see also Eq. �20��. Excitation has been achieved by a pulse with
photon energy ��=1.715 eV, envelope sin2�t /��, and duration of �
=100 fs. The effective two-photon coupling is characterized by deff=1 D
and �̄=50/eV and the single-photon transition by deg=1 D. The maximum
field strength has been varied as indicated. The insert enlarges the popula-
tion which has been achieved by single-photon excitation at the end of the
pulse.
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drives the system to its predefined target state �the optimal
pulse� one considers the overlap �	�tar ���tf�
�2 to be a func-
tional of the field strength E�t�. An extremum of this func-
tional should be obtained if the optimal pulse is known. To
this end, OCT is formulated as a task which solves for an
extremum with the constraint that the field strength is of a
finite value. In a more general formulation, one introduces
the observable

O�E� = 	��tf��Ô���tf�
 �29�

to be optimized in the particular control task. Its optimized

value is known as the control yield �setting Ô= ��tar
	�tar�
we move back to the initially introduced standard version of
OCT�.

To apply OCT with the incorporation of the RWA, we
introduce the control functional as

J�E,E*� = O�E,E*� − ��
t0

tf

dt�E�t��2. �30�

If defined in the appropriate way, the observable O and the
control functional J appear as quantities depending only on
the field envelope E�t� �as well as on its conjugate complex
counterpart�; thus, any oscillation with the carrier frequency
� and multiples of it are absent. The solution of the OCT
results in an optimal envelope E�t� which leads to the opti-
mal pulse only after inserting E�t� into Eq. �5�. Nevertheless,
the approach to optimize the envelope is as flexible as the

original OCT since, for example, any modulation of the car-
rier frequency can be accounted for by a proper change of
E�t�.

To determine the extremum of J�E ,E*� and to derive a
relation fixing the optimal pulse, we take the functional de-
rivative of J�E ,E*�, Eq. �30�, with respect to E*�t�. After-
wards, the result has to be set equal to zero and we arrive at
�see Ref. 19 for details�

E�t� = −
i

��
	��tf��ÔU�tf,t�

�Hfield
�RWA��t�
�E*�t�

���t�


− �U�tf,t�
�Hfield

�RWA��t�
�E�t�

���t�
�*

Ô���tf�
�
= −

i

��
	��t��

�Hfield
�RWA��t�
�E*�t�

���t�


− � �Hfield
�RWA��t�
�E�t�

���t�
�*

���t�
� . �31�

Here, �Hfield
�RWA��t� /�E*�t� denotes the ordinary derivative of

the RWA field coupling Hamiltonian with respect to the field
envelope. Note also the inserted abbreviation

���t�
 = U�t,tf�Ô���tf�
 � �
a

��a�t�
��a
 , �32�

which indicates propagation backwards in time from the
“initial” value

Ô���tf�
 = 	�tar���tf�
��tar
 = 	�tar���tf�
�
a

��a
�tar�
��a


�33�

at time tf to the actual value at time t.
Equation �31� can be considered as a self-consistency

relation for the optimal field. Its concrete form depends on
the specific type of RWA field coupling Hamiltonian. In the
subsequent section we present such self-consistency relation
for nonresonant two- and three-photon transitions. Moreover,

we simply identify Ô with the projection onto the vibrational
state �e

�tar� positioned in the excited electronic state �see Fig.
1�, i.e. we set

Q�E,E*� = 	��tf�� � ��e
�tar��e
	�e�e

�tar�� � ���tf�


� �	�e�tf���e
�tar�
�2. �34�

To have a reference case at hand, we start with the presenta-
tion of this relation for the standard case of single-photon
transitions.

A. The reference case: OCT for single-photon
transitions

When considering single-photon transitions, the general
form of the self-consistency relation is standard �see, for ex-
ample, Ref. 13�. Formulating it in the framework of the
RWA, however, found less attention. It reads as

FIG. 3. Nonresonant three-photon transition in CpMn�CO�3 �upper panel�
compared with a nonresonant single-photon transition �lower panel�. Shown
are the temporal evolutions of the excited-state population Pe�t� �of c 1A�
state, see also Eq. �20��. Excitation has been achieved by a pulse with
photon energy ��=1.143 eV, envelope sin2�t /��, and duration of �
=100 fs. The effective three-photon coupling is characterized by deff=1 D
and �̄=50/eV and the single-photon transition by deg=1 D. The maximum
field strength has been varied as indicated. The insert enlarges the popula-
tion which has been achieved by single-photon excitation at the end of the
pulse.
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E�t� =
ideg

2��
�	�g�t���e�t�
 − 	�g�t���e�t�
� . �35�

Following Refs. 29–31 this expression is inserted into the
equations for forward propagation �vibrational wave func-
tions �a� and backward propagation �vibrational wave func-
tions �a�. Then, the resulting coupled nonlinear Schrödinger
equations are solved iteratively.

The target is set to displace the wave packet in the c 1A�
state to the turning point located at 2.23 Å, as shown in Fig.
1. Figure 4 displays some quantities obtained from the solu-
tion of this control task. The temporal behavior of the elec-
tronic level populations indicates a rather strong excitation

with an about 60% population of the excited state. The re-
lated control yield �already reached after less than ten itera-
tions� lies at about 0.5.

If laser pulse control is considered with the target in an
excited electronic state, the introduction of the renormalized
control yield

q�E,E*� =
Q�E,E*�

Pe�tf�
�36�

is rather useful. It relates the extent to reach the target state
to the overall excited-state population. In the present case q
arrives at a value clearly above Q. The optimal field also
shown in Fig. 4 is directly deduced from Eq. �5� as nE�t�
=Re�E�t�exp�i�t�� by inserting the complex valued optimal
field envelope. It shows a pronounced asymmetry.

B. OCT for nonresonant two-photon transitions

The optimal field self-consistency relation has been de-
rived in Ref. 19 and reads

E�t� =
i

2�� �
a=g,e

daa
�2�	�a�t���a�t�
E�t� + dge

�2�

�	�g�t���e�t�
E*�t� − �
a=g,e

daa
�2�	�a�t���a�t�
E�t�

− dge
�2�	�g�t���e�t�
E*�t�� . �37�

The time-dependent Schrödinger equations for the vibra-
tional wave functions are given by Eqs. �23� and �24� as well
as by the respective versions for the backward propagation.
The explicit appearance of the field envelope on the right-
hand site makes this self-consistency relation for the optimal
field different from the standard single-photon version �see
Eq. �35��. This requires a modification of the scheme to de-
termine the optimal field, a work postponed to the future.

Here, the procedure to compute the optimal field is put
into a somewhat approximate but very efficient form. First,
we neglect the terms proportional to daa

�2� since they only
result in minor corrections. Then, two-photon transitions can
be completely characterized by the effective field envelope

E�t� = E2�t� . �38�

We replace �t0
tf dt�E�t��2 in Eq. �30� by the expression

�t0
tf dt�E�t��4 /2 and afterwards express the optimal field self-

consistency relation by E. This yields

E�t� =
idge

�2�

2��
�	�g�t���e�t�
 + 	�g�t���e�t�
� . �39�

The introduction of E is also possible in the related time-
dependent Schrödinger equations in Eqs. �23� and �24�.
Hence, the determination of the optimal field can be done in
the standard way, but now focusing on E�t�.

Figure 5 shows the same quantities as Fig. 4, however,
following from the solution of the OCT based on two-photon
transitions. The behavior of the electronic level populations,
of the control yield, and the renormalized control yield are
similar to those in the case of single-photon transitions, Fig.

FIG. 4. Laser pulse control in CpMn�CO�3 based on a single-photon tran-
sition into the excited c 1A� electronic state �target vibrational wave packet
is positioned according to Fig. 1, see also Eq. �34��. The photon energy
referring to the carrier wave amounts to 3.43 eV and the final time of the
control task equals 100 fs �the field amplitude of the pulse which initiates
the iterative solution of the OCT is 10 GV/m and deg=1 D�. Upper panel:
total population of the ground state �full line� and of the excited state
�dashed-dotted line�; middle panel: control yield �full line� and renormalized
control yield �dashed line�; lower panel: temporal evolution of the optimal
pulse.

144102-7 Nonresonant multiphoton transitions J. Chem. Phys. 127, 144102 �2007�

Downloaded 25 Jan 2008 to 35.9.2.141. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



4. The obtained optimal field pulse nE�t�, however, deduced
from E�t�, is more intense and with a slightly different shape.

C. OCT with nonresonant three-photon transitions

OCT based on three-photon transitions is formulated
similar to the case of two-photon transitions in the foregoing
section. First, we note

�Hfield
�RWA��t�
�E*�t�

= − 3
8E*2�t�dge

�3���g
	�e� =  �Hfield
�RWA��t�
�E�t�

�*

,

�40�

which yields

E�t� =
3idge

�3�

8��
�	�g�t���e�t�
 + 	�g�t���e�t�
�E*2�t� . �41�

The time-dependent Schrödinger equations for the vibra-
tional wave functions are given by Eqs. �26� and �27� as well
as the respective versions for the backward propagation.

Again, the procedure to compute the optimal field can be
put into a more efficient form by introducing

E�t� = E3�t� �42�

for the three-photon transition. Since the coupling terms to
the radiation field are absent which are diagonal with respect
to the electronic quantum numbers �polarizability terms pro-
portional to daa

�2� in Eq. �25��, the effective field E could be
introduced from the beginning. However, we directly rewrite
Eq. �41� replacing �t0

tf dt�E�t��2 in Eq. �30� by �t0
tf dt�E�t��6 /3.

Then, the functional derivative with respect to E*�t� leads on
the right-hand side of Eq. �41� to E*2�t�E3�t� instead of E�t�.
We arrive at

E�t� =
3idge

�3�

8��
�	�g�t���e�t�
 + 	�g�t���e�t�
� . �43�

Such a replacement is also possible in the related time-
dependent Schrödinger equations in Eqs. �26� and �27� and
the determination of the optimal field can be done in the
standard way but primarily focusing on E�t�.

The solution of the control task �target state according to
Fig. 1� is displayed in Fig. 6. The electronic level popula-
tions, as well as the reduced control yield, behave similar to
the single-photon and two-photon cases �see Figs. 4 and 5,
respectively�. The overall control yield Q, however, needs
some further iteration to be built up, and the optimal pulse
has a stronger field strength �it also appears broader as the
ones calculated earlier�.

The field strength used here as well as in the preceding
section to control two-photon transitions is already in the
so-called strong-field regime and may induce an additional
process accompanying the described two- or three-photon
transitions from the ground to the first excited state. There-
fore, the results have to be understood as a reference for
demonstration. However, it has been already discussed in our
preliminary description of two-photon transitions in Ref. 19
that a decrease of the field strength into a reasonable range is
easily possible, yet maintaining the renormalized control
yield q. Of course the control yield Q is reduced drastically.
We disclaim to present respective curves but state that the
already computed values of the renormalized control yield
can be reproduced by field strengths two or three orders of
magnitude smaller than those presented beforehand.

VI. CONCLUSIONS

Nonresonant multiphoton transitions have been de-
scribed for polyatomic systems. Since a complete solution of
the time-dependent Schrödinger equation accounting for all
electronic levels is impossible, a description in the frame-
work of an effective Schrödinger equation has been given. It
only accounts for all those levels which are directly incorpo-

FIG. 5. Laser pulse control in CpMn�CO�3 based on a nonresonant two-
photon transition into the excited c 1A� electronic state �target vibrational
wave packet is positioned according to Fig. 1, see also Eq. �34��. The photon
energy referring to the carrier wave amounts to 1.75 eV and the final time of
the control task equals 100 fs �the field amplitude of the pulse which ini-
tiates the iterative solution of the OCT is 10 GV/m�. The effective two-
photon coupling is characterized by deff=1 D and �̄=50/eV. Upper panel:
total population of the ground state �full line� and of the excited state
�dashed-dotted line�; middle panel: control yield �full line� and renormalized
control yield �dashed line�; lower panel: temporal evolution of the optimal
pulse.
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rated in the optical transitions as initial, intermediate, and
final states. The multitude of off-resonant states are consid-
ered via effective coupling matrix elements.

While this type of Schrödinger equation is nonlocal in
time, the rotating wave approximation has been combined
with a slowly varying amplitude approximation to arrive at
time-local equations. The latter approximation became pos-
sible since the laser pulse field strength, as well as the mo-
lecular vibrational wave functions, has been expanded with
respect to multiples of the laser pulse carrier wave �oscillat-
ing with a photon energy in the optical range�.

The presented approach has been implemented to non-
resonant two-photon and three-photon transitions taking

place between the electronic ground state and the first ex-
cited state of CpMn�CO�3. Moreover, the optimal control
theory has been adopted to these nonresonant two-photon
and three-photon transitions.

Combining two-photon and three-photon transitions, for
example, to reach a higher ionic state in an electronic three-
level system is straightforward in the presented general ap-
proach. Simulations of the complete two-photon and three-
photon excitations and ionization pump-probe process in
CpMn�CO�3 as it has been already discussed in the
experiment10 are in progress.

ACKNOWLEDGMENT

Financial support by the Deutsche Forschungsgemein-
schaft through Sonderforschungsbereich 450 and GO-1059/
3-1 is gratefully acknowledged.

APPENDIX: THE MOLECULE FIELD COUPLING, THE
RWA, AND THE SVA

Based on the expansion �Eq. �17�� of the vibrational
wave functions and the total time-dependent Schrödinger
equation, we detail in the following how to achieve a sim-
plification of the time-nonlocal terms in Eq. �16� by applying
the RWA and the SVA. Respective calculations for the two-
photon term have been already presented in Ref. 19 and are
shortly quoted here only for completeness.

Let us consider the time-nonlocal term of Eq. �16� to be
proportional to Dab

�2�. We note Eq. �5� for the field strength,
the expansion according to Eq. �17�, and the abbreviation
Dab

�2�=nDab
�2�n. Moreover, we introduce products of factors os-

cillating with exp�−in�t� as well as with exp�in�t�. All
terms can be arranged in such a way that they have the com-
mon prefactor exp�−in�t�. It requires to move in part from
�b�n ; t̄� to �b�n±2; t̄�. The introduction of the difference time
�= t− t̄ results in

− �
b
�

t0

t

dt̄Dab
�2��t − t̄�E�t�E�t̄��b�t̄�

= − 1
4�

n

e−in�t�
b
�

0

t−t0

d�Iab
�2��n;t,�� , �A1�

with

Iab
�2��n;t,�� = Dab

�2���� � �E�t�E�t − ��ei�n−1����b�n − 2;t − ��

+ E�t�E*�t − ��ei�n−1����b�n;t − ��

+ E*�t�E�t − ��ei�n+1����b�n;t − ��

+ E*�t�E*�t − ��ei�n+1����b�n + 2;t − ��� . �A2�

As underlined in Sec. IV the RWA reduces the set of func-
tions �a�n ; t� to �g�0; t� and �e�2; t�. At the same time the set
of Iab

�2��n ; t ,�� has to be specified, respectively.
Since the expansion functions, as well as the field enve-

lopes, vary slowly in time compared to the carrier wave os-
cillations, we may take them out of the � integral applied to
the various Iab

�2�. Then, time integrals with respect to Dab
�2����

remain. In order to calculate them we introduce the DOS of
the secondary states resulting in

FIG. 6. Laser pulse control in CpMn�CO�3 based on a nonresonant three-
photon transition into the excited c 1A� electronic state �target vibrational
wave packet is positioned according to Fig. 1, see also Eq. �34��. The photon
energy referring to the carrier wave amounts to 1.143 eV and the final time
of the control task equals 100 fs �the field amplitude of the pulse which
initiates the iterative solution of the OCT is 10 GV/m�. The effective three-
photon coupling is characterized by deff=1 D and �̄=50/eV. Upper panel:
total population of the ground state �full line� and of the excited state
�dashed-dotted line�; middle panel: control yield �full line� and renormalized
control yield �dashed line�; lower panel: temporal evolution of the optimal
pulse.
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Dab
�2���� =

i

�
� d
��
�d�a,
�e−i
�d�
,b� , �A3�

where d�a ,
� and d�
 ,b� couple the primary states �a and
�b, respectively, to the manifold of secondary states. Noting
Eq. �A3�, as well as t0→−� and �= ±1,3, we introduce the
effective �two-photon� coupling matrix element

dab
�2� = �

0

�

d�ei���Dab
�2���� =

−
1

�
� d
��
�

d�a,
�d�
,b�
�� − 
 + i�

. �A4�

If ���3� is much smaller than the range where the second-
ary state frequencies 
 start to contribute, we may write

dab
�2� �

1

�
� d




��
�d�a,
�d�
,b� �

�̄

�
deff

2 . �A5�

Of course, replacing dab
�2� by a mean value �̄ of the DOS and

the square of an effective transition dipole moment deff, as

done in the last step of our calculations, seems to be a rather
crude approximation. Nevertheless it offers a suitable param-
etrization for those cases where no other possibility exists to
get access to more precise values.

The three-photon term of Eq. �16� is reformulated in the
same way as the two-photon one. We introduce Dab

�3�

=Dab
�3�nnn �a third-rank tensor multiplied by three ordinary

unit vectors� and change to new time arguments t− t̄=� and
t1− t̄= �̄. The index n is replaced in such a way to have a
common prefactor exp�−in�t� for all terms. This results in

− �
b
�

t0

t

dt̄�
t̄

t

dt1Dab
�3��t − t1,t1 − t̄�E�t�E�t1�E�t̄��b�t̄�

= − 1
8�

n

e−in�t�
b
�

0

t−t0

d��
0

�

d�̄Iab
�3��n;t,�, �̄� , �A6�

with

Iab
�3��n;t,�, �̄� = Dab

�3��� − �̄, �̄��E�t�E�t − �� − �̄��E�t − ��e−i��̄+i�n−1����b�n − 3;t − �� + E�t�E*�t − �� − �̄��

�E�t − ��ei��̄+i�n−1����b�n − 1;t − �� + E*�t�E�t − �� − �̄��E�t − ��e−i��̄+i�n+1����b�n − 1;t − ��

+ E*�t�E*�t − �� − �̄��E�t − ��ei��̄+i�n+1����b�n + 1;t − �� + E�t�E�t − �� − �̄��E*�t − ��e−i��̄+i�n−1���

��b�n − 1;t − �� + E�t�E*�t − �� − �̄��E*�t − ��ei��̄+i�n−1����b�n + 1;t − �� + E*�t�E�t − �� − �̄��

�E*�t − ��e−i��̄+i�n+1����b�n + 1;t − �� + E*�t�E*�t − �� − �̄��E*�t − ��ei��̄+i�n+1����b�n + 3;t − ��� . �A7�

The RWA reduces the set of functions �a�n ; t� to �g�0; t� and
�e�3; t�, and the Iab

�3��n ; t ,� , �̄� turn into the following nonva-
nishing expressions:

Ige
�3��0;t,�, �̄� = Dge

�3��� − �̄, �̄�E*�t�E*�t − �� − �̄��

�E*�t − ��ei��̄+i���e�3;t − �� . �A8�

and

Ieg
�3��3;t,�, �̄� = Deg

�3��� − �̄, �̄�E�t�E�t − �� − �̄��

�E�t − ��e−i��̄−2i���g�0;t − �� . �A9�

As in the foregoing section, the application of the SVA re-
sults in products of field envelopes and the expansion func-
tion at time argumet t. A double time integral with respect to
Dge

�3� and Deg
�3� remains. We first take into consideration �a ,b

=g ,e�

Dab
�3��� − �̄, �̄� =

1

�2 � d
d
̄��
���
̄�

� d�a,
�e−i
��−�̄�d�
,
̄�e−i
̄�̄d�
̄,b� .

�A10�

Setting t0→−� and noting �= ±1 and �=1,−2, the effective

�three-photon� coupling matrix element can be defined as

dab
�3� = �

0

�

d��
0

�

d�̄Dab
�3��� − �̄, �̄�ei���+i���̄

= −
1

�2�
0

�

d��
0

�

d�̄� d
d
̄��
���
̄�

� ei���−
��+i���+
−
̄��̄d�a,
�d�
,
̄�d�
̄,b�

= −
1

�2 � d
d
̄
��
���
̄�d�a,
�d�
,
̄�d�
̄,b�

�� + 
 − 
̄

� 1

�� + ��� − 
̄ + i�
−

1

�� − 
 + i�� . �A11�

Again ��+��� should be much smaller than the range where

the secondary state frequencies 
 and 
̄ start to contribute.
Then, the following approximations can be taken:
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dab
�3� �

1

�2 � d
d
̄��
���
̄�d�a,
�d�
,
̄�d�
̄,b�

�

 − 
̄

�
 − 
̄�

̄

�
1

�2 � d

��
�d�a,
�



� d
̄

��
̄�d�
,
̄�d�
̄,b�


̄

�
�̄2

�2 deff
3 . �A12�

Similar to the two-photon case this expression provides a
suitable parametrization of the effective coupling matrix el-
ement.
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